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A phenomenological model of polymer melt spinning is proposed that allows exact analytical treatment. 
Using the description of crystallite orientation by means of a simple Ising-type approach, it is possible to 
follow the crystallization and orientation processes up to rather high draw ratios and large times. 
Approximate solutions for the strain-rate and time dependences of the fibre temperature, degree of 
crystallinity and orientation are obtained. It is shown that the early stage of crystallization is described 
by the Avrami equation with exponent 2. 
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INTRODUCTION 

The problem of fibre spinning kinetics is one of the most 
intriguing and complex in present-day polymer physics. 
It was shown 1-5 that in polymer fibres drawn 
from melt or concentrated solution, very complicated 
supermolecular structure exists. Even for fibres with 
rather high draw ratios (DR) and, respectively, high degree 
of crystallinity, the structure is very far from ideal crystal 
packing. The account of these circumstances requires 
different and rather complicated models. 

At present, there exist many theories explaining 
the thermodynamics of fibres and their equilibrium 
properties (e.g. Young's modulus) as a function of initial 
conditions and characteristics of drawing. Some of 
them 6'~ are based on the idea that Young's modulus 
depends only upon molecular orientation, not super- 
molecular structure. This concept proved to be correct 
in many cases, but in general the role of structure is 
important and cannot simply be neglected. 

Some theories are devoted especially to polymer 
crystallization s. The kinetics of chain folding, lamellae 
formation and reorientation are their main subject. 
Nevertheless, thus far this approach has failed to provide 
complete analytic results, though a qualitative picture 
has been provided. 

The third kind of description of polymer fibre drawing 
lies in the hydrodynamic analysis of anisotropic liquid 
flow. In these theories 9 the viscosity of the liquid is a 
function determined by local structure, while local 
temperature and flow velocity are determined from the 
hydrodynamic equations. So from the molecular point 
of view this class of theories is a purely phenomenological 
one. 

Between these concepts there exists a large unfilled 
gap. A possible bridge across this gap must be built on 
the basis of constructing semi-phenomenological theories 
of the 'structure-properties' type. It cannot be a molecular 
theory (in this case it would be very complicated), but it 
must have as its structural units the small super- 
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molecular structures - -  crystallites. In this case only the 
elementary crystallization characteristics are considered 
as known - -  they are determined from the experiment 
and/or molecular theory. The formation of complex 
structures - -  shish-kebabs, lamellae, spherulites and 
fibrils - -  must be described properly in this 'bridge' 
theory - -  as well as the crystallization kinetics. The first 
step in this direction is made in the paper proposed. 

MODEL 

Let us consider a fibre spun from a polymer melt. The 
problem can be considered as one-dimensional, if 
transverse effects are not taken into account in the first 
approximation. The scheme of the process is shown in 
Figure 1. 

During the spinning, fibre velocity increases; we 
suppose this increase to be a linear one: 

V(x) = Vo + Wx (1) 
where W= de/dt is a strain rate and Vo is the initial flow 
velocity. 

In our analysis we will look at the kinetics of 
crystallization. In order to introduce the degree of 
crystallinity we imagine a three-dimensional lattice. Each 
site of this lattice is occupied either by an elementary 
crystallite or by an amorphous polymer. Degree of 
crystallinity • thus can be defined as the fraction of sites 
filled by crystallites. 

Since drawing determines a specific direction, we can 
introduce a director and measure the orientation of each 
crystallite with respect to this director. Let us suppose 
that crystallites have only two possible orientations - -  
along the x axis (director orientation) or in the yz plane. 
Let us denote the fraction of former ones as X; then the 
percentage of latter ones is ~ - X .  

If we suppose that the orientation of crystallites may 
occur only through the amorphous state, not directly, 
then the kinetic mechanism should be as follows: 

(yz crystallite)~(amorphous phase)~(x crystallite) 

(2) 
Let us consider a not very late stage of crystallization, 
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Figure 1 Mechanical scheme of the process to be modelled 

when it is still possible to neglect the inverse 'reaction' 
of melting and disorientation of crystallites. In this ease 
the kinetic equations are: 

dO 
- - =  [K ~(T, e)+ K2(T, e)](1 - O )  (3) 
dt 

dX 
- -  = K , ( T ,  e)(1 - O )  (4 )  
dt 

where K 1 and Kz are temperature- and strain-dependent 
kinetic coefficients. To investigate their T and e 
dependences, though, it is necessary to involve some 
thermodynamic considerations. 

Since, below the melting point, crystallization is 
preferred, the internal energy of the system is a 
monotonically decreasing function of O. Also, as the 
strain e increases, the orientation along the x axis becomes 
more favourable, so, in total, the internal energy may be 
written in a form: 

U = -- trAO- btreX (5) 

where A and b are empirically introduced parameters 
(their calculation should be a task of molecular 
crystallization theory), and ~r is the polymer linear density. 
The lattice mixing entropy is given by: 

S/kB= -(1 - O )  In(1 - O ) - ( O - X )  In(O- X ) -  X In X 

(6) 
Minimization of free energy F = U - T S  on • and X 

gives their equilibrium values O* and X*. They are 
determined by equations: 

* * - X * = e x  p ( T A  "~ 
1 --  O* \ g a  I /  

O* -- X* = exp 

(7) 

(8) 

Let us examine the influence of draw ratio ). 
(or, the same, of strain e=ln 2) on the kinetics of 
the crystallization and orientation reaction. The first 
reaction of scheme (2) 'amorphous phase~x crystallite' 
is characterized by the direct reaction rate constant K t 
and inverse reaction rate constant K'~. They obey the 
well known relationship: 

Kx_ K _ X* fA+be'~ 
K-~I- =q- 1 - O "  = e x P ~ , ~ )  (9) 

The second reaction 'amorphous phase-~yz crystallite' is 
also characterized by the pair of reaction rate constants 
K 2 and K~, which depend upon each other in a similar 
way: 

~---- Keq = * *  - -  X*-- exp(. A )  (10) 
K'2 1 - 0 "  tcB l / 

In the absence of strain (e=0), KI=K2, K'I=K'2= 
K 1 exp(-A/k,T); it is evident because directions x, y, z 
are indistinguishable. For the case e > 0 we suppose that 
g 2 and K~ do not change, while K 1 and K'~ must be 
multiplied respectively by factors exp(be/2kaT) and 
exp(-be/2k, T). Also we suppose that (A/kaT)> 1, so 
Ka >> K] and it is possible to disregard the inverse reaction 
up to very high degree of conversion, as we mentioned 
earlier. 

The temperature dependence of K~ and K2 may be 
determined from several simple assumptions. At T= Tm 
(melting point) the crystallization rate is zero, because 
crystallites of the required size cannot form. At T= T s 
(glass transition) it is also zero, because molecular 
mobility is frozen. That is why crystallization can occur 
only in the temperature interval between Tm and Ts; for 
the T dependence ofK 2 we propose the simplest formula: 

K2 = K®(1 - ®) (11) 

where O=(T-Tg)/(Tm-Tg), and g is a coefficient that 
should be determined independently - -  in this theory it 
is simply a phenomenological parameter. Thus a system 
of two equations (3) and (4), with Kz and Kz given by 
equations (9)-(11), is obtained to describe the behaviour 
of four variables: deformation ~, temperature 0,  degree 
of crystallinity q) and orientation X. To complete this 
system, it is necessary to add two more equations. These 
equations can be easily written: they are the mass 
conservation and the energy conservation equations. 

The mass conservation equation can be written in the 
form: 

0a 0 
--~ +~x (~V)= 0 (12) 

If we suppose that the diameter of a fibre does not change 
significantly during the entire process (of course, it is not 
always true), then the linear density of lattice sites a is 
inversely proportional to draw ratio 2. Let us expand 
this assumption also for the case of non-constant- 
diameter drawing and ascribe the diameter changes 
(unless they are not very large) not to the change of lattice 
site density, but to difference in orientation and, hence, 
transverse cross-section for different kinds of crystallites. 
In this case, since a stationary process is analysed, 
equation (12) may be rewritten as follows: 

W+(V° + dxd (~)  =0 (13) 
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Thus, from equation (13) we see that 2 = 1 + (Wx/Vo), and 
deformation e is therefore given by: 

e= ln  2 =In[1 +(Wx/Vo)] (14) 

The last equation necessary to complete the system is 
the energy conservation law. Taking into account the 
fibre cooling due to the interaction with the environment, 
we can write energy balance in the form: 

d 
d--~ [V(x)U(x)] +qkB(T- To)=0 (15) 

with To the temperature of the air, q the inverse 
characteristic cooling time and U(x) the density of internal 
energy, given by: 

U = a(cT-  AO-- beX) (16) 

where c is heat capacity. (Though heat capacity of any 
polymer strongly depends on its state, we will nevertheless 
consider it constant throughout the processing. The 
justification for this assumption is that the region of 
temperatures is not very large and that c depends on 
microstructure, but not on orientation.) From equation 
(12) it is evident that V(x)a(x)=Voao and therefore 
equation (16) may be rewritten in the form: 

aoWd~b ooA dO aob d 
+ ea~ 

g de qk.(Tm-To) de qkB(Y~-Yo)de (ex)=O 

(17) 

where according to equation (14) transition was made 
from independent variable x to variable e. We suppose 
that both environmental temperature and glass temperature 
are much lower than T m. 

As a result of the transformations performed, three 
parameters X, • and ~, are described by the complete 
system of three equations - -  equation (17) and a pair of 
kinetic ones: 

W dO 
. . . .  4(1--~k)(ea~+ 1X1 - O )  (18) 
K de 

W dX 
- -  - - =  tp(1 - (p)ea'(1 - O )  (19) 
K de 

with A = (aob/2k B Tin). It is important to emphasize again 
that since equations (18) and (19) do not take into account 
inverse reactions, they are not valid at very high degrees 
of conversion 'amorphous phase --*crystal'. 

If the drawing is conducted under constant strain, not 
strain rate (i.e. I4'-- 0, V= Vo, e = Co), then instead of indirect 
time dependence via deformation we will have time 
dependence via x coordinate. Kinetic equations for this 
case take the form: 

X = [ca'/(1 + ea')]O (20) 

dO 1 
- ~ ( 1  - ~kX1 - ( I ) )  ( 2 1 )  

dx A 

d~,b + v O__ = K dO (22) 
dx A dx 

where parameters A, v and x are given by: 

A -  V° 
K(1 + ea9 

(23) 
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qkB 
v = (24) 

pcK( 1 + e a*) 

A + beea*/( 1 + e a~) 
~: = ( 2 5 )  

c( T m -  T,) 

In the next section we will analyse the behaviour of 
solutions of the system (17)-(19), describing the early stage 
of fibre drawing from the melt. After that, the process of 
fibre spinning from solution will also be analysed. The 
approximate analytic solution of equations (20)-(22) will 
be found and comparison will be made with experimental 
data 1°. Emphasis will be put on the deviation from the 
Avrami law of crystallization. 

MELT DRAWING - -  SOLUTIONS 

Small e 
For drasing from the melt, initial conditions are: 

(i) ~b = 1, temperature is that of melting; 
(ii) • = 0, degree of crystallinity is zero; 

(iii) X =0,  there are no oriented crystallites. 

At the beginning of the process all three functions X, 
• and ~ may be expanded into series in e. It can be easily 
shown that the series for • and X should start from the 
term proportional to e 2, because at e =0,  O, X, (dO/de) 
and (dX/de) are all equal to zero (it follows from initial 
conditions and equations (18) and (19) in which the 
right-hand sides become zero when ~ = 1). That is why 
for small e: 

• = cte 2 (26) 

X =fie 2 (27) 

= 1 - 7e ( 2 8 )  

(only leading terms are preserved). 
Substitution of the expressions for O, X and ~O into 

equations (17)-(19) gives for ct, fl and ), the following: 

Kq 
a = - -  (29) 

GoCW 2 

Kq 
fl = - -  (30) 

2a oc W 2 

q 
7 = - -  (31) 

aocW 

Equations (26)-(31) describe the early stage of 
crystallization with simultaneous cooling. These results 
also must be taken as asymptotic ones for general 
solutions. 

It is necessary also to point out that e is proportional 
to t (because strain rate is constant) - -  hence degree of 
crystallinity and orientation are proportional to t z. 

Intermediate ~ (an approximate analytic solution) 
To obtain solutions of system (17)-(19) that are valid 

over a large time scale, it is necessary to simplify this 
system significantly. First of all, from equations (18) and 
(19) we can derive the relationship between • and X: 

X(e) = [ '  
dO ea~ 
dy 1 + e a~ dy (32) Jo 
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convenient for analysis: 

® + A2KLo ~KL°,2~b 2 In2(1 + 1/~b) ~b In3(1 + 1/~b) 
g=cPo \ Vo J 12Vo 

(41) 

with ~b = (f Vo/KLo). Maximization of g on ~b may give us 
the optimal strain rate (i.e. the strain rate that provides 
maximal degree of crystallization at point Lo). 

If we take into account only the first term in equation 
( 4 0 ) ,  we can see there is no maximum - -  function 
[~b In(1 + lab)] 2 increases continuously from 0 to 1. On 
the contrary, the second term has a maximum at point 
~b ~ 0.06. So, the behaviour of the exponent as a whole 

Let us take ~(e) in the form: 

O(e) = 1 - e x p [ -  g(t)] (33) 

This Avrami-type 11 form describes correctly the 
behaviour of fibre crystallinity for all the range of times, 
even for very high conversion. But since the model 
proposed is valid only for small and intermediate degrees 
of crystallinity, we deal only with the region of e where 
0 < 9 < 1. Let us expand 9 into a series in e and preserve 
only two leading terms: 

g(e) = at 2 +/~e 3 (34) 

(here ct is given by (29), and # will be determined later). 
Substituting (33) and (34) into (18), we obtain: 

14~2cte + 3/Ze 2) 
•(1 -• )= (35) 

K(1 + e  r~) 

The maximum of the left-hand side of (35) is equal to 
0.25, and hence the maximum of the right-hand side 
must be the same - -  this gives an equation for the 
determination of/t. If we denote ~ = At this equation may 
be written as follows: 

W (2(~t/A)¢ + 3(U/A2)¢2'] = 0 25 
- -  max (36) 
K ~ \ l + e  ~ J " 

After some transformations and numerical analysis the 
value of # is obtained: 

2~A ( 8 ~ - 0 . 2 5 )  (37) 

On the basis of results obtained, it is possible to 
describe the behaviour of all three functions ~, X and ~, 
in a rather broad interval of times. Near the point 
e = (2/A), where the maximal conversion rate is achieved, 
the temperature of the polymer decreases sharply - -  the 
derivative (dtI)/de), calculated from equation (17), is given 
by: 

{ 2 =  ~ m - - - r  0 .5exp( -2 /A)  2K(poA+4Tm)AW(Tm_To) 

expV Kq {8 2pocWY] 
x l 

PobW X[~= 2/A} (38) 
q(Tm -- To) 

The first term dominates and thus the temperature drop 
is almost all near the point e = 2/A, as schematically shown 
in Figure 2. 

Let us analyse now the fibre crystallinity at the chosen 
point x = L  o, corresponding to the end of the real 
processing region. If we denote f =  K/W, 0 = q/K, then the 
crystallization and orientation at this point should 
crucially depend upon f and O. The deformation e at 
point/-o is given by: 

e(Lo)=lnl l  +(Wio/Vo)]=ln[1 +(KLo/fVo)] (39) 

and the degree of crystallinity (1)(Lo) is equal to: 

~(Lo) = 

1 -- exp{ --f2Oe2/Cpo -- 2f2OAea[(pocA/8fO) - 0.25]/3cp} 

(4O) 

where t=t(Lo),  given by equation (39). 
The exponent can be rewritten in a way more 

¢ 

I.(~ 

0 .~  

0 

Figure 2 
function of deformation ~ or time t 

2 / A  E 

Dimensionless temperature ~=(T-To)/(Tm-To) as a 
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Figure 3 Degree of crystallinity at point x = Lo vs. strain rate W; W* 
and ~*  are defined by (42) and (43) 
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is determined by the dimensionless parameter: 

G = 120KLo/cp  o Vo A2 (42) 

If G<< 1, maximal crystallization can be achieved at a 
strain rate: 

W*= 16Vo/L o (43) 

and is equal to: 

• *=  1 - e x p [ - O . 1 2 A Z ( K L o / V o ) ]  (44) 

The dependence of ~(L0) on W in the limit G<< 1 is 
schematically plotted in Figure 3. If G>> 1, there is no 
maximum in crystallinity and • increases monotonically 
as Wdecreases. 

DISCUSSION 

The model proposed here and preliminary results of 
rough calculations in its framework allow us to describe 
some qualitative regularities of fibre drawing from the 
melt in the case where the temperature of the polymer 
is not maintained constant, as in real drawing processes. 
Unfortunately, most experiments to date have been 
performed at constant temperature, so direct comparison 
with experimental data now is difficult. Nevertheless, 
qualitatively the model proposed gives an acceptable 
prediction about the possibility of having the optimal 
strain rate for a drawing process. 

In fact, the proposed model is the extension for the 
case of non-constant temperature of the so-called 
finite-grain model of crystallization (FGM) (see, e.g., ref. 
12). The main idea is that, at some stage of crystallization, 
when sizes of crystallites are large, they either cannot 
grow more or this growth is not the main contribution 
to crystallization kinetics. Thus, the dimensionality of 
growth changes. 

It is important to emphasize that, though the solutions 
of the kinetic equations obtained in this paper are correct 
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only for low and intermediate degrees of crystallinity, the 
equations themselves may be easily adapted to the case 
of arbitrary crystallinity and deformation. Nevertheless, 
it will be much more difficult to obtain analytic solutions. 
In particular, the function d~(e) will be of more generalized 
Avrami type, with exponent containing more than two 
terms. 

A problem beyond consideration was the structure 
formation (fibrils, shish-kebabs, etc.). The analysis of this 
aspect of drawing, nevertheless, is also possible in 
the framework of the model proposed. The use of 
modern theories of structural instabilities (e.g. spinodal 

decompos i t ion  13) will probably give a means of 
description of these structures. 
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